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ABSTRACT
Let S denote the space of piecewise polynomials of degree < k and
smoothness o on the reqgular partition of R% which is generated either by
the three directions (1,0), (1,1), (0,1) or by the four directions (1,0),
(1,1, (0,1), (-1,1). For the choice

p = p(k) := max{p : dim S‘ 9 ¥ o(N2)} ,
[-NIN]
(wvhich is the maximal smoothness for which the space S is nondegenerate), we

determine the functions which have minimal support in S. Moreover, we show

that these functions form a basis for

S(N) := {f e S :s8upp £C O} .
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SIGNIFICANCE AND EXPLANATION
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—~Zn_{MRC_#2415] _we-applied out’ results on box-splines [MRC #2320] to

analyze the approximation properties of bivariate smooth piecewise polynomials

Hoa
on the three direction mesh. In this report we obtain similar results for the
“up 2
other natural triangulation of lq which is generated by four directions. In

f Xi} i / / Ziyp
particular we extend cur results on minimality of support which are useful for

constructing bases with good computational properties. )?er’a ; Vot drarn b
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MINIMAL SUPPORT FOR BIVARIATE SPLINES
Carl de Boor' and Xlaus m}luq"z

1. Introduction and statement of results.

Let 8 := ':' a denote the space of bivariate spline functions of smoothness ¢ and
(total) degree < k on a partition A of R2. In this note we determine the spline
functions of minimal support for the two regular partitions 44, A, which are generated by

the unit vectors ey, e, and their sum and difference e, + ey, €5 =~ &4.

<Figure 1>

These minimal support eslements provide a canonical basis for the subspace of functions in
S with compact support. FProm a practical point of view, small support of basis functions
is desirable for finite element approximations and quasi-interpolant schemes.

If the degree k of the spline space S = t:' A is large compared to the smocothness
p, elements of minimal support can be easily constructed using Hermite interpolation.
However, in applications one often wants to achieve a certain smoothness with as few
parameters as possible. When k is small compared to o, the smoothness requirements

lead to nonlocal constraints which complicate the analysis. We consider in this note the

extreme case of minimal degree k(p), i.e. the smallest degree k for which the family of

’8ponlorod by the United States Army under Contract No. DAAG29-80-C-0041.
2Supportod by International Business Machines Corporation and National Science Foundation

Grant No. DMS-8351187.

ORI .

RO T A
ARG AGRY, A AN N

..
!

.
-

ot .
WA

e \':‘:'-: -

o
.y . o

A,

.

ol B | l."l{c(v
PR

L



LN Rl b

iy Be e e

-

I
)

LY, [

f SN NE L YR Y

< SR

spaces 8, 1= {f(*/h)1 £ ¢ B}, h > 0, 1is dense in Cj(R%). Obviously, the degres ki(p)
is the most “"economical™ choice for a given smoothness p (if one wants to minimize the
local dimension of 8). Por the two partitions in Figure 1 we have (c.f. [4] for A, and
section 2 for 4,)

1 kp(p) = [(2 + Vit + 1)/tv + )] , v = 1,2,

where m = gup{n ¢ B: n < x}. Roughly speaking, the (minimal) degree increases by

2 + v if the smoothness increases by 1 + V. The first values of k, are listed in the

table below.
[ -1 0 1 2 3
k1(9) 0 1 3 4 6
kz(D) 0 1 2 4 $

To state our results, we need addition notation. For a set 1 C ‘2 we denote by

S(R) the subspace of functions in S which have support in f. (Note that this differs

from sln, the restrictions of f e¢ 8 to fl.) By span F we denote the linear span of ¢

the set Y. We say that a function M has (unique) minimal support in § iff

span {f} (=) C S(supp f) -
(2) and
ng supp £ ==> dim S(R) = 0 .
We write s(’, as abbreviation for wz ()8 " By Nv w’ u = 1,2, we denote the functions
v v 4
with unique minimal support in S::-z, normalized by the condition INt_ = 1, (“1'u is

piecewise constant; "2.11 is piecewise linear).




(0,0)

<Pigure 2>

The simplest nontrivial exasples of minimal support elements are the "hat"-function
Hy € 82 and the Zwart element [15] M, € s;: both functions are normalized to satisfy

ni_= 1.

(0,0)

supp M,

<Figure 3>

Purther examples can be found in [14]. The element "1,6' defined below, appeared in
{11]; but the minimality of the support was not proved.
Theorem 1. let Vv = 1,2, de 3.

(i) Te functions

M e T
—_—
a-times
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have unique minimal support in

a(vet)=2
s“'d t. 8" .

(11) The functions

'\"“ld = “\'.u * H"id' v 12
have unique minimal support in

~ a(v+1)+v=2
s“'d 1= sv

Here, f * g = f 2 f{* - y)g(y)dy denotes the convolution of two functions f and g.
Figure 4 below I:OII the supports of the minimal support elements.
Theorem 2. For any convex set  C ‘2, the integer translates of the functions ’\a,d and
N, u,a Vvith support entirely in Q form a basis for the spaces a\,'d(m and %v,d(m
respectively.

We have not completed our investigations for the spaces fi. P = 2mod 3. One would
expect that convolution of M, with the characteristic functions with minimal support in

-1
8,

yields the sequence of minimal support elements. However. :his is already false for

sg. F. Sablonniere (14) constructed a C:2 quartic element with the same support as M,
For the three-direction mesh (v = 1) Theorems 1 and 2 have been proved in {4]. This

case is included here for completeness. The analysis for the four-direction mesh Az is

more complicated because of the two different types of vertices, z’ and Tt ¢ z’, with

T = (= 1/2 v '/2 )+ However, some of the techniques developed in [4] are still applicable.

If the necessary modifications are straightforward we shall only outline the arguments and

refer to [4). In particular the proof of Theorem 2 for v = 2 is completely analogous to

the case of the three~direction mesh (4, Prop. 4.2] and will not be repeated hers.

In section 2 we obtain a few general results about the spaces ¥ « Sections 3 and

p
k,Az

4 are devoted to the proof of Theorem 1 (for the four-direction mesh).
A version of this report was issued in May, 1984, as C.A.T. report #97, Mathematics

Department, Texas A & M University, College Station, TX.
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(0,0)
supp M) 4 supp M, 4
a+1l
a
.
supp B 1.4 swep Ny 5.4
a{
d+1
s N
PP Ny 5 a supp K, 5,4
<Figure 4>
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2. Auxiliary results.

In this section we obtain a representation of functions in § := 'i,Az in terms of
translates of truncated powers. The four-direction mesh A2 has two vertex types, the one '
exemplified by 0 and the one exemplified by

ta= (=%, % .

The two differ in that the latter is “singular”, i.e. formed as the intersection of two
meshlines, hence is less likely to be on the boundary of the support of elements of 8.

For a set of vectors = = {51,...,51} the truncated power T; can be inductively

defined by

TE t1d TE * TE\E I} with

Ty 0 := fn#o(- -Ap)a .
We denote by T , p € z:, the truncated power corresponding to the directions § =
(€4,85,85,8,) 1= (ey,04%e,,85,05-0,) occurring with multiplicities p4, Py, P3r Pg
respectively. For example we have

Ty,0,1,0" ¢ " /I g  #(e - Ay mar .

R

i.e. for tpu - 2, Py ¢ 2, T is the characteristic function of the cone spanned by the

o4

appropriate two directions. The second relation in (3) becomes

*
(4) TP“’P' = Tp Tp| .
It is easy to see that the truncated power Tb is a homogeneous piecewise polynomial of

degree Epu = 2, with smoothness ugj Py - 2 across the ray generated by the j-th

3irection and with support in the cone generated by the vectors Prcr' r= 1,..0,4.

Denote by C the cone generated by E,, 54 and let W := {(u,v): {u, vt 3=
max(|ul,|v]) < 1/2}). Then S(C)|, can be decomposed into its homogeneous components (cf.
(4, Lemma 2]}, i.e.

(s) so)|, = o ¢
ook X

where Qg 1= {f ¢ s(c)lw: £(Ae) = A%f}. fThe restriction of functions in S(C) to the

segment [ := [E‘,E4]/2 is an isomorphism from Qg onto the univariate spline space Q'

-6 .
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of degree £ with the knot sequence (0, 1/3, 1/2, 1), each knot occurring with

multiplicity 2 ~p (i.e., Q' has smoothness p). From the smoothness and support of

AR

the truncated powers it is clear that their restrictions to T are B-splines and in Q.

.

We identify each B-spline with a vector q ¢ l: wvhere q, is the multiplicity of the v-th

A

“»
'~

“w

knot. let Ag denote the collection of all such vectors q for the standard B-spline
basis for Q's e.g. Al = {(2, 2, 1,0, (1,2 2 0, (0, 2,2,1), (0, 1, 2, 2)}. It
follows that

(6) =0 span T
. quz qiv

Denote by C the cone spanned by £,, E,, but with vertex T = (-1/2, 1/2), and let

W i=t +W. In a sinilar manner one concludes that

N 8| = o &
Wk
(8) %= o span T (o -1,
ek, q v

vhere X} 1= {(0, v, 0, W)t v,u S L =p, vy =2+

The subspace S{C) of elaments of S = ':"2 having support entirely in C is
infinite-dimensional, but we can specify a truncated power basis for it in the spirit
familiar from univariate spline theory. Explicitly, we can specify a sequence of truncated
powers with the property that every f ¢ S8(C) has a unique expansion in terms of this
sequence, with the expansion converging uniformly (in fact finitely) on any bounded get.
The formal statement below, in Lerma 1, is to be interpreted in this sense.
lowma 1.

S(C) = @ span ({'rq(' -Y:1qe A‘:, L <k, ¢ 2N c}

(9)

Ul (e -t-3qel, tex, 3es’nah .
a

Proof. In outline, the proof is as followa. Associate with each vertex v in C the

cone

-T-

I
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This induces a partial order

w>vii=wecC, ,

and we give a linear ordering of the vertices in C which refines this one. The promised
truncated power basis consists of the relevant truncated powers for each vertex, ordered
according to this vertex ordering.

Obviously, the truncated powers, Tb(° - 1), (p,1) = (q,)) or d&:j+1), appearing on

the right hand side of (9) are elements of S(C)., Their linear independence follows from

13

R A
4 ety

(5)~(8) and the fact that

R
5 %y

(1 + W) N supp !b(- - 1) N supp Tb.(' -iY)Y=9 ,

if 4, <13 orif (i, = 13 and 1, < i}).

let f € S(C). We claim that there exist functions tv € @ span {Tq(' - v£1): qe A:. iéi

..
l. [

S

L <Xk}, ve Z,, such that the support of g := £ - ttv is contained in the union 0 of

‘
VA

'-"-“l

the cones \:E1 + E, vV € Z,. To show this, we assume that to,...,fv_1 have been defined

o
,

V=1
and that g, := f - 2 tu has support in QU (v£1 + C). It is clear that
u=0

gyl* + vE ], € 8(C)|, and we define £, as the extension of the truncated power

representation for 9v| B
v£1+w

Prom the definition of I we see that g + vE,) € 8(C)|_. Therefore by (7) and
VS w

(8) there exist functions

hv € ® span {T (¢ -7 - vE,): e K:, L<XK,vV e L

AN
. q
o~ such that g - thv has support in 24 + C.

By repeating the above procedure we can find inductively linear combinations of

truncated powers which agree with f on the cones uE4 +C,u=1,2,s00 « This completes

the proof of the lemma.

Sy A N RN

It is clear from the above proof that translates of any functions which agree with the

-_a

truncated powers near zero and have smaller support also provide a basis for S(C).

f Moreover, an analogous version of Lemma t is valid for any cone which is the image of C
[
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under an affine mapping which leaves the partition 4, invariant.
From Lemma 1 we obtain what may be called the "local dimension™ of S by counting the
number of elements in the sets A. We have
- L Az » (4(L - p) -2 - 1)+, Ve 22

(10) local dimenaion at v =

oK:-(z(z-p)-z-1)+,ver+z2 .

It follows in particular that dim S(C) = 0 iff 4(k - p) -k - 1< 0. This yields
formula (1) for ko since a nonzero local dimension is necessary and sufficient for the
: ]
denseness of S, in co(lz) (2].
We now specialize the above results for the spaces §, = wi (0,8 of minimal
v T2

degree. We have

3a-2

A
k2(3d-2)

= {{a,4,4,4)} ,
SR}

A:d(aa) = {(a+1,d+1,d+1,d), (4,d+1,d+1,a+1))
2

and denote the corresponding truncated powers by t, and tu,d' u = 1,2, respectively.

In both cases,

p-
o’Kl 0 for £ < k,(p)

[
L Al =0 for £ < kz(p) .

In particular, the "secondary” vertices, i.e., v e T + zz, are not active. Therefore
identity (9) reduces to
2
sz'd(C) = @ span {cd( -3: 3eg Nnc)

(9")
~ 2
sz,a(c’ = @ span {tu'd( -~ 3): w=1,2, jez"cl .

Prom (4) and the definitions of M, N and t one sees that for x ¢ W,




a4l

--04“.

R
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LYY

Pt
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PN

M

a8 .

td(x) - Hz'd(x) '

(12)

€, al0) =Ny k)

nM,a
Therefore we can replace the truncated powers in (9') by the corresponding elements
and N respectively.

For later reference we note that for (u,v) e C, v+ 0,

talu,v) = aud-1,38-1 0(9§d)

(13) ty,alu,v) = Budy3T 4 587153842 (3043,

£y, alu,w) = =132 4 g(y3843

where a, B and Y are positive constants.
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3. Proof of Theorem 1 (i)
Denote by conv A the convex hull of the set A. We first prove
lewwa 2. For L € 5, wve sat @, := conv{0, RE,, &4+ £y, £}, B, 3=
conv{0, LE,, 2, + E3, -E4) and define 3z, 1= {t|a‘s £e8, 4 supp £C {(u,v)s
v> 1 U8R}, 3, 1= {tlazz £ €8, 4 supp £C ((u,v)s u=-v<}URL. Then we have
dmz = (L+1-a),,4i=12 .
The cases i = 1,2 are not geowetrically equivalent since the pattern of the mesh for
Q, and Qz is slightly different.
Proof. Consider, e.g., the case i = 1. Let
0 1= 2£, + conv{0, E,/2, §,} -

8ince supp ty(e - 3J) =3 + C, it follows from (9') that
[ 3
={g= T at.lc~vE)s €m £lg =01 .
1 vep Vi R ]

Since f wvanishes on 0 we obtain from (13) that

]
] ac(u-v)
V=0

-0,!<u<£4'1 o

These are =min{4,2+1} 1linearly independent constraints on the coefficients a, vwhich

implies aim 2, ¢

(l‘*‘ -d)*o

Vs 0,....!.-6,

are linearly independent and in Z,.

To prove that "2.& has unique minimal support in sz,a'

supp £ C supp ".a for some £ € 8,a°

tlemma 2, with ¢t = 4,

The reverse inequality follows since "2, at* - v:,)h‘,

assume that

implies that £ = ¢ M, a4

on the set A, 1= conv{0, ay, dt‘ﬂz. €‘}- we define inductively a sequence of sets

AqiAgrece a8 follows. Por i = 1,2,... we choose a shortest segment l‘i with respect to

? ), of the piecewise linear boundary of B; 1= supp "z,a \ :9' ‘\a' Then we define
Ay = {x ¢ By dlsty(x,l;) < 1/2}. This procedure is illustrated in Figure 5 below for
4 = 2,

The sets A;, L > 0, are contained in sets of the type described in Lemma 2 with

L ¢ 4. Therefore, we inductively conclude that f = c My 4 vanishes on Aq,Rpseee o
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4. Proof of Theores 1 (ii) ‘

We need two lesmas.

Lemma 3. let @, and Z, be defined as in Lemma 2 but with 8, , replaced by "éz a
’

Then we have ¢
\3
dmZ e (L -A), +(L+1-a), . o
Proof. Similarly as in the proof of Lemma 2 we conclude that ;—5
o
- - ‘
i v-o,g..,z a,ut,aft “VEDr A, € R £y =0} N3
u= 1,2 \
€
LAS

where 0 is defined as before. Comparing the coefficients of v:"!"'1 ana v3#2 i, the

expression for f on the triangle © we obtain, using (13), for £ <Ccu <t + 1 IS
3
~T Y
L a ’
] o, Stu-na0 , 0
V=0 ’ —
o
| 2 a-1 et
I (a, S +a, yi(wu=-v)T =0 . o
veo ) NS
i
3
These are min{1+1,4+1} + min{2+1,4} 1linearly independent constraints on the coefficients »
<
a, , vhich implies dim Z, € (L~ d), + (L + 1= 4),. The reverse inequality follows s‘
since '2,1,d(. - 961)|01' Ve or...,(l - | - d)‘, and Nz‘z'd(‘ - VE1)|n1, vV = " ;
O0seee,(t = A),, are linearly independent and in 2. &‘._,.
lemma 4. Let I = mV(O' d£1+E2, “4"(3' “} and Q' := {(“07)3 v 1,
~ ' "':.v
u+vr2l. It fec ’2,a‘° U '), then !ln\n, = 0. :_.:_,
Proof. On the set N\R', the function £ can be written as linear combination of "-:’:-
— r
truncated powers, S
—
£=ay,1%,a" %,2%,a" .
\.~\
! s = vg,) + ¢« = vE,) . O
ocvea V¥ u'd 5N '] u a! 4 \\::
u=1,2 AW
.
The truncated powers tu d(' - v§ ‘) as well as the function £ vanish on the triangle Y.
[
8. By using (13) the coefficient of v3%*', for (u,v) e 0, is "
. (.
RS
-13- 1]
e
N
=3
e
T~
KK
ey
:
4 o i
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This implies ag,1 = -0 " a8, " 0. Applying the analogous argument for the triangle
0 = dE‘ + conv{0, T, E3}' we conclude that a; , = a] 5 = .. = '&,2 = 0. Using in

particular that ‘0,2 = 0 and again relation (13) it follows that for (u,v) ¢ 8,

d—1v3d+2 3d+3

flov) = 1 & vtu-v) +0(v e o .
’

o<¢véa
This implies that ay 2= e =23, " 0 and finally, by using the analogous argument
for 0 that a;'1 . .= né,1 = 0,

To prove that N := R, ,4 has minimal support in 3 assume that supp £C supp N

2,4’
for some f ¢ 32 a Let T be a segment of the piecewise linear boundary of supp N with
’

diam, T = 4/2. The set A, := {x ¢ supp N: Adist_(x,T') < 1/2} is of the type considered in

Lemma 3 with £ = 4 and we conclude that £ =c N on Age We define inductively a
i-1

sequence of sets R /Ay,..c as follows. If B, = supp LASRY A“ has a corner y with
v=0

angle < ¥/2 we set A; = {x: Ix - y0_ € 1/2}. Otherwise we choose two adjacent segments

I', T* of the boundary of B; with diameter < 4/2 and set Ay 1= {x ¢ ‘i'

dist_(x,F UT') < 1/2}. This procedure is illustrated in Figure 6 below for N3, 1,1°

<Figure 6>
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The sets A; are contained in sets of the type considered in Lemma 3 with & = 4 - 1
(3,5,6 in Pigure 6) or Lemma 4. In either case we inductively conclude that £ - cN

vanishes on Ag,Agsece o
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